Stepped-care for depression and anxiety in visually impaired older adults: a multicentre randomised controlled effectiveness trial

Journal: BMJ

Manuscript ID: BMJ.2015.025367.R1

Article Type: Research

BMJ Journal: BMJ

Date Submitted by the Author: 20-Aug-2015

Complete List of Authors: van der Aa, Hilde; VU University Medical Centre, Ophthalmology van Rens, Gerardus; VU University Medical Centre, Ophthalmology Comijs, Hannie; VU University Medical Center, GGZinGeest Margrain, Tom; Cardiff University, School of Optometry and Vision Sciences Galindo-Gare, Francisca; Vrije Universiteit, Center for Biostatistics Twisk, Jos; VU University Medical Centre, Epidemiology and Biostatistics van Nispen, Ruth; VU University Medical Centre, Ophthalmology

Keywords: stepped-care, depression, anxiety, visual impairment
Steppe-care for depression and anxiety in visually impaired older adults:
multicentre randomised controlled trial

Hilde PA van der Aa, Ger HMB van Rens, Hannie C Comijs, Tom H Margrain, Francisca Gallindo-Garre, Jos WR Twisk, Ruth MA van Nispen

Department of Ophthalmology and EMGO+ Institute for Health and Care Research
(EMGO+), VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands, Hilde PA van der Aa, PhD candidate Faculty of Medicine
Department of Ophthalmology and EMGO+ Institute for Health and Care Research
(EMGO+), VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands, Ger HMB van Rens, Professor of Ophthalmology
Department Psychiatry VUmc/ GGZinGeest, A.J.Ernststraat 1187, 1081HL Amsterdam, the Netherlands, Hannie C Comijs, Associate Professor Clinical Psychology
School of Optometry and Vision Sciences, Cardiff University, CF24 4HQ, Cardiff, United Kingdom, Tom H Margrain, Director of Innovation and Engagement
Department of Epidemiology and Biostatistics, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands, Francisca Gallindo-Garre, Statistician
Department of Epidemiology and Biostatistics, VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands, Jos WR Twisk, Professor of Applied Biostatistics
Department of Ophthalmology and EMGO+ Institute for Health and Care Research
(EMGO+), VU University Medical Centre, De Boelelaan 1117, 1081 HV, Amsterdam, the Netherlands, Ruth MA van Nispen, Assistant Professor of Low Vision Research

Correspondence to: Hilde PA van der Aa, h.vanderaa@vumc.nl
ABSTRACT

Objective: To compare the effectiveness of a stepped-care programme with usual care in visually impaired older adults with subthreshold depression and/or anxiety.

Design: Single-masked multicentre international randomised controlled trial in two parallel groups.

Setting: 17 locations of three outpatient low vision rehabilitation organisations in the Netherlands and Belgium.

Participants: 265 visually impaired patients (aged ≥50 years) from low vision rehabilitation organisations with subthreshold depression and/or anxiety. Participants were randomly assigned in a 1:1 ratio with stratification (by trial centre) to either the stepped-care programme plus usual care or usual care only.

Intervention: A population specific stepped-care programme containing: 1) watchful waiting, 2) cognitive behavioural therapy-based guided self-help, 3) problem solving treatment, and 4) referral to the general practitioner, delivered by supervised occupational therapists, social workers and psychologists from low vision rehabilitation organisations.

Main outcome measures: The primary outcome was the 24-month cumulative incidence (seven measurements) of major depressive, dysthymic and/or anxiety disorders (panic disorder, agoraphobia, social phobia and general anxiety disorder) according to the DSM-IV criteria, measured with the Mini International Neuropsychiatric Interview. Secondary outcomes were change in symptoms of depression and anxiety, vision-related quality of life, health-related quality of life, and adaptation to vision loss over time until 24 months follow-up.

Results: 62 participants from the usual care group (46.3%) and 38 participants from the stepped-care group (29.0%) developed a depressive and/or anxiety disorder (absolute difference 17.3%; 95% confidence interval (CI) 12.8 to 21.9). The intervention significantly
reduced the incidence of the disorders (relative risk 0.63; 95% CI 0.57 to 0.69), even if time
to the event was taken into account (adjusted hazard ratio 0.57; 95% CI 0.35 to 0.93). The
number needed to treat was 5.78. In addition, a significant improvement was found for
symptoms of depression (β -0.06, 95% CI -0.12 to -0.01) and symptoms of anxiety (β -0.21,
95% CI -0.41 to -0.01) in favour of stepped-care.

Conclusions: Stepped-care seems to be a promising way to deal with depression and anxiety
in visually impaired older adults. This approach could lead to standardised strategies for the
screening, monitoring, treatment and referral of visually impaired older adults with depression
and anxiety.

Trial registration: http://www.trialregister.nl, identifier: NTR3296.
INTRODUCTION

Impaired vision is one of the leading causes of age-related disability; 285 million people globally are visually impaired, of whom 65% are aged ≥50 years.\(^1\) Depression and anxiety are common health problems in visually impaired older adults. About one-third experience subthreshold depression and/or anxiety (indicating clinically significant symptoms, but no actual disorder).\(^2\) About 7% are diagnosed with an anxiety disorder and 5–7% with a major depressive disorder, according to the DSM-IV.\(^5\)\(^7\) These percentages are substantially higher than the prevalence in the general elderly population.\(^8\)\(^9\) Both disorders can have a detrimental impact on visually impaired older adults, leading to increased vision-specific disability, decreased quality of life, a decline in health status, and even mortality.\(^4\)\(^10\)\(^12\) However, care providers underestimate the negative effects of vision loss, standard procedures are missing, and patients often do not perceive a need for professional mental health services.\(^10\)\(^13\) Hence, detection of depression and anxiety is poor and treatment is often lacking.

Systematic reviews show that some studies have found effective psychological interventions, i.e. self-management programmes and problem-solving treatment (PST), to reduce depression in visually impaired older adults.\(^10\)\(^14\) These reviews suggested that psychological interventions can be incorporated into low vision rehabilitation, because functional ability and depression are closely related in this group. In addition, effects of psychological interventions have only been studied up to six months,\(^10\)\(^14\) while longer-term efforts to monitor and prevent depression and anxiety may be needed. Visually impaired older adults are likely to face further physical decline over time (eye diseases are often degenerative), which can lead to an increased risk of depression and anxiety.\(^10\)

Several studies outside the field of low vision found that stepped-care service delivery models, designed to delay or prevent the onset of depression and anxiety in persons who show early symptoms, can be effective.\(^15\) Stepped-care aims to meet the long-term disease
management needs of patients and maximise the effectiveness and efficiency of resource allocation. Subsequent treatment components are offered by order of intensity, i.e. patients start with low-intensity interventions and only move on to higher-intensity interventions when a sufficient response is lacking. Progress is monitored throughout the entire process. Current multidisciplinary guidelines for mental healthcare in the Netherlands and the National Institute for Health and Care Excellence (NICE) in the United Kingdom, recommend using a stepped-care model to address depression in older adults. However, stepped-care has not been investigated in chronic visually impaired older adults, who experience specific difficulty in adjusting to their disability. Taking into account the high prevalence of depression and anxiety in this population and the possibilities of a long-term preventive approach, the present study aimed to investigate the effectiveness of a population specific stepped-care programme to prevent the onset of major depressive, dysthymic and anxiety disorders. In addition, the effects on reducing symptoms of depression and anxiety, and improve adaptation to vision loss and quality of life were determined. It was hypothesised that stepped-care, incorporated in low vision rehabilitation care, would be more effective than usual care alone.

METHODS

Study design

This study used a single-masked international multicentre randomised controlled trial (RCT) design, exactly as described in the original protocol. Participants were individually randomised in the ratio 1:1 to one of two parallel groups i.e. to usual care or stepped-care plus usual care.

Participants
Between July 2012 and April 2013, a total of 3,000 patients aged ≥ 50 years from outpatient low vision rehabilitation organisations in the Netherlands and Belgium were contacted by letter and telephone and asked to participate. Of these, 914 provided written informed consent (response rate 30.5%). Participants were allowed to withdraw their consent for any reason at any time during the study. Baseline interviews with responders were performed to determine eligibility.

The low vision rehabilitation organisations follow the World Health Organisation (WHO) criteria for eligibility, which are described in the Dutch guideline ‘Vision disorders, rehabilitation and referral’. This guideline dictates that all patients should have a decimal visual acuity of ≤0.3 and/or a visual field of ≤30 degrees around the central point of fixation and/or an evident help request for which options in regular ophthalmic practice are not adequate, such as contrast sensitivity or glare. Additional inclusion criteria were: a) having subthreshold depression and/or anxiety: i.e. a score of ≥8 on the Hospital Anxiety and Depression Scale-Anxiety subscale (HADS-A) and/or ≥16 on the Centre for Epidemiologic Studies Depression scale (CES-D); b) not meeting the diagnostic criteria of a major depressive, dysthymic and/or anxiety disorder according to the DSM-IV (measured with the Mini International Neuropsychiatric Interview (MINI)); c) being able to speak the Dutch language adequately; and d) not being severely cognitively impaired (measured with the Six-item screener, a short version of the Mini Mental State Examination; MMSE).

Additional details on inclusion criteria and protocol design are described elsewhere.

Patient involvement

Patients (n=8) from low vision rehabilitation organisations were involved in the development and implementation of the stepped-care programme based on two focus group meetings in the Netherlands and Belgium. Patients were not involved in determining study conduct,
recruitment and design. The burden of the intervention and participation in the study in
general was assessed by a panel of patient representatives which was assigned by the funding
agency. The burden of the intervention was not assessed as such by participating patients, but
satisfaction with the intervention was. Results of the study will be disseminated by letter to all
participants by the end of 2015.

Randomisation and masking

A pre-specified power calculation (based on an effect size of 0.44, \(\alpha \leq 0.05 \) (two-sided), power
of 0.85, drop out rate of 20\%) showed that a minimum of 230 patients was needed (115 in
each arm).\(^\text{18}\) Since drop-out rates observed at the start of the trial were higher than expected,
more patients were recruited (n=265). Patients were assigned to either usual care, or the
stepped-care programme in addition to usual care. A computerised random number generator
was used to produce the allocation scheme. The scheme was based on blocks of two and
stratified by 17 locations of three outpatient low vision rehabilitation organisations in the
Netherlands and Belgium. Randomisation took place after the baseline measurement by an
independent researcher. Patients were registered as being a participant of this study in their
records at the rehabilitation centres. Only when guidance needed to be offered in step two or
three of the stepped-care programme, were the clinical staff directly informed by the
independent researcher as to which patient to treat.

Data was collected from September 2012 to July 2015, during which seven
measurements took place (at baseline, and at 3, 6, 9, 12, 18 and 24 months) by means of
telephone interviews. These were performed at the VU University Medical Centre by masked
research assistants, who were trained to diagnose depressive and anxiety disorders and follow
a pre-specified protocol. At the outset of the study and at the start of each telephone interview
participants were told not to divulge the nature of their treatment during the telephone
interviews. We checked if masking was maintained by asking research assistants to guess
which treatment arm was offered. They were right in 38% of the cases, indicating that
masking was effective. To minimise the possibility of data entry errors, the research assistants
used specially designed data entry software (Blaise) to record all measurements. Due to the
nature of the intervention, the participants and therapists could not be masked.

Interventions

The stepped-care programme was based on a model similar to that previously used in the
general elderly population and shown to be effective.27,28 The programme was altered and
tailored to the needs of people with vision impairment based on a focus group with social
workers and psychologists from the low vision rehabilitation organisations (n=12) and two
focus groups with patient representatives (n=8). Specific attention was given to the difficulty
of adjusting to vision loss and the physical and psychological consequences of this
impairment (e.g. bereavement, fatigue, psychosocial adjustment) that may lead to feelings of
depression and anxiety. Exercises and examples were altered and added based on direct input
of patients and professionals. Specific attention was also given to the manner in which the
programme was offered (e.g. audio and Braille version of written documents). Additional
information on programme development is provided elsewhere.18

The final programme contained four consecutive steps that took about three months
each: 1) watchful waiting, 2) cognitive behavioural therapy-based guided self-help, 3) PST,
and 4) referral to the general practitioner (Figure 1). All treatments were offered individually.
Only when patients still had elevated symptoms of depression and/or anxiety (score of ≥8 on
the HADS-A and/or ≥16 on the CES-D) they could move on to the next step. A score below
the cut-off point resulted in a (longer) period of watchful waiting until an elevated score
indicated the need for the following step of the programme. Therefore, not all patients of the
stepped-care group completed all steps of the intervention. Patients were seen at the
rehabilitation centre or at home, based on the patient’s preference. Patients in both the
stepped-care and usual care group who developed a major depressive, dysthyemic and/or
anxiety disorder, were directly referred to their general practitioner (GP) to discuss further
treatment. Usual care in both the treatment and control group included outpatient low vision
rehabilitation care and/or care that was provided by other healthcare providers.

Outcome measures

The primary outcome measure of this study was the incidence of major depressive, dysthyemic
and/or anxiety disorders (panic disorder, agoraphobia, social phobia and/or general anxiety
disorder) according to the DSM-IV, for which the Dutch MINI Plus (5.0.0), developed in
clinician-rated format (MINI-CR), was used at baseline, and at 3, 6, 9, 12, 18 and 24 months
in both the treatment and control group. The MINI is a brief, structured interview developed
to diagnose psychiatric disorders according to DSM-IV criteria. It is considered a valid and
reliable tool to define mental disorders based on a 20-minute telephone interview. The
MINI shows moderate to high kappa coefficients for all diagnoses, except for general anxiety
disorder for which the kappa is just below 0.5. Although a dysthyemic disorder requires a
depressed mood for over two years (not interrupted by more than two months at a time), it
was included in the outcome measure, because participants who were not diagnosed with a
dysthyemic disorder at one time point (e.g. they were only experiencing a depressed mood for
the last 1.5 years) could be diagnosed with this disorder by the next time point. History of
major depressive, dysthyemic and panic disorder at baseline were also determined with the
MINI.

Secondary outcome measures were symptoms of depression and anxiety measured
with the CES-D and HADS-A at baseline, and at 3, 6, 9, 12, 18 and 24 months. The CES-D is
a 20-item scale with a total score ranging from 0-60 and a cut-off score for subthreshold depression and/or anxiety of ≥16. It is a widely used scale and considered a valid and reliable instrument to measure both depression and anxiety symptomatology in older adults. The HADS-A was used to measure symptoms of anxiety. The HADS-A has seven items, with a total score ranging from 0-21 and a cut-off score for subthreshold anxiety of ≥8. The reliability of the HADS-A is reported to be ‘good to very good’ in older adults.

Other secondary outcome measures were vision-related quality of life measured with the Low Vision Quality of Life Questionnaire (LVQOL, with 21 questions on a 6-point Likert scale, measuring the disability suffered by patients in daily life), adaptation to vision loss measured with the Adaptation to Vision Loss (AVL) scale (adapted from the AVL-12, with 9 questions on a 4-point Likert scale, measuring intra and interpersonal acceptance of vision loss), and health-related quality of life measured with the Euroqol-5 Dimensions (EQ-5D, which consists of five dimensions of functional impairment: mobility, self-care, usual activities, pain/discomfort and depression/anxiety). Utility scores based on the Dutch tariff were used, where 1 denotes full health and 0 means a health state comparable to death (range -0.58 to 1, where negative utilities are valued as worse than death). These secondary outcomes were measured at baseline, after 12 and 24 months.

For the process evaluation, first, compliance with treatment in step two and three of the programme was measured based on the number of patients who rejected the intervention and the number and duration of appointments. Second, therapist adherence to the PST protocol was reviewed based on audiotapes of a random selection of PST sessions (n=13). Third, adoption of the interventions was determined based on therapists’ experiences, measured with two questions: 1) ‘Are you satisfied with the results of the intervention?’, 2) ‘Do you think the intervention suited the needs of the patient?’,
the services, measured with the Dutch Mental Healthcare (MH) thermometer of satisfaction: a widely used 20-item questionnaire.33 Usual care was measured at 6, 12, 18 and 24 months with the Trimbos/iMTA questionnaire for Costs associated with Psychiatric illness (TicP). This questionnaire measured self-reported healthcare utilisation based on the number of contacts with a GP, company physician, medical specialist, physiotherapist or occupational therapist, social worker, psychologist or psychiatrist, alternative healer, homecare, guided group-based peer support, hospitalisation and use of medication in the past six months.34 Received mental health services in three months before the start of the study was determined at baseline with the Perceived Need for Care Questionnaire (PNCQ), measuring 1) received information about mental illness and treatment possibilities, 2) practical support, 3) skills training, 4) counselling/therapy, and 5) medication.35

Decimal visual acuity was retrieved from patient files at the low vision rehabilitation centres; missing values (n=22) were supplemented with estimates of visual acuity provided by self-report based on recent ophthalmic diagnostics. To enable meaningful computations, these values were transformed to logMAR values (-log\textsubscript{10} visual acuity) where a visual acuity of 0.00-0.29 represents normal vision, 0.30-0.51 mild vision loss, and 0.52-2.00 low vision or blindness.

Patients were asked about comorbidity based on eight major condition groups: peripheral arterial disease; asthma or chronic obstructive pulmonary disease; diabetes mellitus; osteoarthritis and rheumatoid arthritis; cerebrovascular accident or stroke; cardiac disease; cancer; and other chronic conditions. Compared to GP information, the accuracy of the self-reports of these diseases was shown to be adequate and independent of cognitive impairment.36
Data analysis

An intention-to-treat analysis was performed using SPSS for Windows version 20 (SPSS IBM, New York, USA). First, differences in patient characteristics in the stepped-care and usual care group, and in patients who dropped-out and those who completed the follow-up period, were tested for consistency based on independent sample t-tests and chi-square tests.

Second, the relative risk of developing a depressive and/or anxiety disorder in the usual care versus the stepped-care plus usual care group, and the number needed to treat as the inverse of the risk difference, were determined. Third, a survival analysis based on a Kaplan Meier curve, Log-rank test and (adjusted) Cox proportional hazard regression analysis were used to compare differences between the stepped-care and usual care groups in time to the onset of a depressive and/or anxiety disorder. Survival analysis was chosen because time played an important role in the present study, as the programme aimed to delay or prevent the onset of a depressive and/or anxiety disorder.

To increase reliability of the effect estimates of the secondary outcomes, psychometric properties were investigated using item response theory (IRT). IRT models allow obtaining a statistical truth for probabilities and responses on secondary outcomes (latent traits, denoted as θ) of the study population. The psychometric properties were investigated on baseline CES-D, HADS-A, LVQOL and AVL data of participants (N=914) using R software (Rstudio version 0.99.447). The larger dataset was chosen to avoid checking IRT assumptions on a selection of participants having subthreshold symptoms of depression and/or anxiety (trial inclusion criteria). The assumptions of 1) (uni)dimensionality was checked with factor analyses; goodness-of-fit was considered satisfactory if comparative fit index (CFI) >0.95, Tucker Lewis index (TLI) >0.95 and root mean square error of approximation (RMSEA) <0.08; 2) local independence of items of the latent scale was checked by the size of residual covariances <0.25; 3) monotonicity was checked with Mokken scaling and item tests (G²,
p<0.001). To ensure that the relationship between item responses of trial participants and non-trial participants were similar, analyses of differential item functioning (DIF) were performed. DIF analyses were also used to investigate measurements invariance over time (between baseline and 24 months follow-up). If needed, outcomes were modified, i.e. some items had to be removed, in order to have an appropriate IRT model, i.e. the graded response model (GRM) for rating scales was chosen for its known robustness and flexibility.29,30 Mean differences in item thresholds after item removal and the maximum absolute difference were determined to decide if item removal was necessary. Information on the abovementioned psychometric properties of the secondary outcomes can be found in Appendix 2. Item parameters and additional information can be requested from the authors.

To investigate the effect of the intervention on the secondary outcomes, linear mixed models using maximum likelihood estimation were performed on θs (instead of summary scores) if model fit was achieved. In the linear mixed model, the follow-up measurement time-points of every secondary outcome were adjusted for its baseline value. The intervention effect was defined as the interaction of treatment allocation (stepped-care vs. usual care) by time (follow-up until 24 months).

RESULTS

Participant flow

Non-responders (n=2086) were significantly older than responders (n=914, mean difference 4.6 years, p<0.001), no significant difference in gender was found. Baseline interviews resulted in the exclusion of 519 responders who had no depression/anxiety symptoms, 124 who had a depressive/anxiety disorder and 6 who were cognitively impaired. The remaining 265 eligible participants were randomised to either the stepped-care group (n=131) or the usual care group (n=134). Of these, 91 participants were lost to follow-up after 24 months.
1 (34.3%); 45 in the stepped-care group and 46 in the usual care group (Figure 2). Those who
2 dropped-out of the study were significantly older and more often lived in a nursing home than
3 those who were not lost to follow-up (p<0.05). The most common reasons for loss to follow-
4 up were: i) mortality (15.5% of stepped-care and 23.9% of the usual care group), ii)
5 physically or mentally not able to continue (17.8% of stepped-care and 21.7% of usual care
6 group), and iii) too great a burden to continue (17.8% of stepped-care and 17.4% of usual care
7 group).

8 Of the stepped-care group, all participants received a period of watchful waiting, 56%
9 received guided self-help, 18% received PST, and 5% were referred to their GP (Table 1).
10 Patients who did not move on to the next step of the programme either no longer had
11 subthreshold symptoms of depression and/or anxiety, or developed a full-blown depression
12 and/or anxiety disorder and were immediately referred to their GP. No significant difference
13 was found between the stepped-care and usual care group in baseline patient characteristics
14 and health care utilisation (p<0.05), except for education level (p=0.02, Table 2).
15
16 Effectiveness
17 Of the 131 participants in the stepped-care group, 38 (29.0%) developed a major depressive,
18 dysthymic and/or anxiety disorder versus 62 of the 134 participants (46.3%) in the usual care
19 group during the 24-month follow-up (Table 3). The absolute difference was 17.3% (95%
20 confidence interval (CI) 12.8 to 21.9). The stepped-care programme significantly reduced the
21 incidence of depressive and anxiety disorders with a relative risk of 0.63 (95% CI 0.45 to
22 0.87, p=0.005). The number needed to treat (as an inverse of the absolute risk difference,
23 1/0.173) was 5.78 (95% CI 3.48 to 17.32), indicating the average number of patients who
24 needed to be treated to prevent one additional depressive or anxiety disorder. Of the 38
25 patients who developed a disorder in the stepped-care group 19 had a history of major
depressive, dysthymic and/or panic disorder (50.0%), compared to 18 of the 62 patients in the control group (29.0%). This difference was statistically significant ($\chi^2 4.44, p=0.04$). Mental health services used in the past for people who developed a disorder during this trial were not statistically different for the stepped-care and usual care group.

The Kaplan Meier curve and the Log-rank test showed a significant difference in time to the onset of a depressive and/or anxiety disorder between the stepped-care and usual care group ($\chi^2 8.22; p=0.004$). Cox-regression analysis showed a crude hazard ratio of 0.59 (95% CI 0.38 to 0.91, $p=0.018$) and an adjusted hazard ratio of 0.57 (95% CI 0.35 to 0.93, $p=0.024$, adjusted for centre and baseline patient characteristics described in Table 2). The proportional hazard assumption was met.

Based on IRT analysis θs of the CES-D, LVQOL and AVL were used to determine effectiveness; for the HADS-A, the original summary scores were used (see Appendix 2). Significant intervention effects were observed after 24 months for the CES-D ($\beta -0.06$, 95% CI -0.12 to -0.01, $p=0.041$) and the HADS-A ($\beta -0.21$, 95% CI -0.41 to -0.01, $p=0.038$) in favour of stepped-care. Intervention effects for the LVQOL were on the verge of significance ($\beta 0.11$, 95% CI -0.01 to 0.23, $p=0.055$), however, no significant intervention effects were found for the AVL ($\beta -0.04$, 95% CI -0.10 to 0.17, $p=0.570$) and the EQ-5D ($\beta 0.01$, 95% CI -0.03 to 0.04, $p=0.590$). Observed mean summary scores and θs of the secondary outcomes per measurement for the stepped-care and usual care group are presented in Table 3.

Process evaluation

Out of 73 patients who were eligible for guided self-help, six refused and twelve only partly received guided self-help. Out of 29 patients who were eligible for PST, five refused and four only partly received PST. Main reasons were: i) participants did not believe this kind of help was necessary (36.8%) and ii) it was too great a burden to follow the intervention (27.8%).
four cases, patients received more help with the self-help course than pre-determined, i.e. one
patient received an additional face-to-face and telephone contact, and four patients received
an additional telephone contact. On average 5.33 (range 2-11) PST sessions took place. In two
patients, the therapist offered more support than the pre-determined maximum of seven PST
sessions, i.e. one patient received 8 and another patient received 11 PST sessions. Audiotapes
showed fidelity to the PST treatment protocol. However, in two cases PST steps could not be
completed during one session, they were then finished in another session.

Occupational therapists were satisfied with the result of the self-help course in 72.7%
of the cases and thought the intervention suited the needs of patients in 70.5% of the cases.
Social workers and psychologists were also frequently satisfied with the result (68.4%) and
believed that PST suited the needs of patients (63.2%). Information on patient-evaluation of
services is presented in Table 4. Lower satisfaction scores were not associated with
developing depressive and/or anxiety disorders after 24-months follow-up (Mann Whitney U
test, guided self-help, p=0.61; PST, p=0.71).

DISCUSSION

This study shows that, compared to usual care, stepped-care had a significant preventive
effect on developing depressive and anxiety disorders in visually impaired older adults over a
2-year period (adjusted HR=0.57) and significantly reduced depression and anxiety
symptoms. These outcomes resemble those of another study showing a stepped-care
programme for older adults in the general population to be effective in preventing depressive
and anxiety disorders (≥75 years). This is an important outcome considering the serious
consequences of these disorders in visually impaired older adults and the previous absence of
long-term treatment effects. Preventing these disorders will have a positive impact on many
different aspects of patients’ lives and may lead to a reduction of societal costs (e.g.
healthcare costs and productivity). A trend in favour of stepped-care was also seen on quality of life outcomes, but were not statistically significant over time.

The present study combined treatment components and monitored patients during a 2-year period by offering support only when needed, based on elevated symptoms of depression and anxiety. In combination with usual low vision rehabilitation care, this seems to be a promising strategy to manage depression and anxiety in this population. It also confirms previous findings indicating that psychological services could be integrated in low vision rehabilitation care,10,14 which will increase accessibility of these services and enable professionals to combine expertise on depression and vision impairment. Notably, these results were established even though only a few patients required receiving all four steps of the programme and all patients were included in the analyses.

Still, many participants (37.7\% of the total study population) developed a depressive and/or anxiety disorder during the course of this study. In the stepped-care group half of these patients had a history of depressive/anxiety disorders as opposed to 29\% of the controls, indicating that especially first episodes of these disorders were prevented by the stepped-care programme. Therefore, the programme may be less suited for visually impaired patients with a history of major depressive and anxiety disorders. These participants might benefit from higher intensity psychological interventions or pharmacotherapy.

\textbf{Strengths and limitations}

This study has several strengths. It shows that investigating different protocol-driven treatment components, based on successful randomisation and single masking, is feasible in low vision psychological intervention studies. Drop-out rates were high but acceptable and treatment fidelity was largely maintained. The pragmatic design of the study greatly enhances the generalisability of the results, giving rise to widespread implementation within low vision
rehabilitation care. In contrast to previous trials in the field of low vision, this study addressed both depression and anxiety, which is relevant considering the high comorbidity of these disorders, and investigated a long-term disease management model, during which support was only offered when needed based on elevated symptoms of depression and anxiety, to maximise effectiveness and efficiency. In addition, many patients were recognised as having subthreshold depression and/or anxiety or an actual disorder based on the screening and monitoring procedure, which otherwise may not have been identified. This highlights the need for such procedures within low vision care delivery models.

However, this study also has some limitations. First, it was not possible to assess the specific contributions of each individual step of the programme. Future studies might choose a dismantling approach; determining redundant treatment components. Second, selection bias may have occurred because patients who volunteered and were selected for this study may have differed from other eligible individuals, thereby reducing the generalisability of the outcomes. Responders were significantly younger than non-responders, and participants had less cognitive and physical problems and may, for instance, have had better access to health care and may have been more motivated based on hope of personal gain. Third, both low vision staff and patients were unmasked, which could have led to some information bias, i.e. participants in the stepped-care group might have had more attention on treatment outcomes, leading to an overestimation of the results. In addition, this study was mainly based on self-reports; although validated questionnaires were used, this may have led to social desirability and/or recall bias. The low kappa coefficient for diagnosing general anxiety disorder with the MINI may have led to over- or underidentification of this disorder. Finally, the drop-out rate was fairly high (34.3%). This was partly expected because we examined a fragile study population (elderly with a vision impairment and depression/anxiety) and because the follow-up period was longer than any previous psychological intervention study performed in the
field of low vision (seven measurements in two years). Drop-out rates were not significantly
different for the stepped-care and control group, indicating that the intervention was equally
acceptable as usual care. However, we do need to realise that offering psychological
interventions in this fragile population is a challenge and that feasibility should have a high
priority in future studies.

Implications for practice and directions for future research

Findings of the current study introduce possibilities for standard choices on screening,
monitoring, treatment and referral trajectories to deal with depression and anxiety in visually
impaired older adults. Patients with subthreshold symptoms can benefit from the (low
intensity) psychological services offered in the stepped-care programme that can be integrated
in low vision rehabilitation care. In many patients only watchful waiting, in which problems
are identified and briefly discussed, and the CBT-based guided self-help course were
sufficient to reduce depressive and anxiety symptoms. These low intensity and low cost
interventions may fairly easy be implemented in low vision rehabilitation care, because of
their accessibility (i.e. people with vision impairment do not have to travel), focus on
empowerment and low intensity of necessary resources (i.e. professional support).

In addition, screening and monitoring procedures should be incorporated in low vision
rehabilitation care, since detection of depression and anxiety, especially in an early stage of
the complaints, is poor. Professionals (even non-mental health staff) should be made aware of
the high prevalence and recurrent nature of these conditions and patients should be stimulated
to talk about it both at the start of rehabilitation (intake procedure) and during treatment, since
eye diseases are often degenerative which may lead to depression and anxiety over time.

Patients with a history of major depressive and anxiety disorders should be monitored
carefully and offered higher intensity psychological interventions or pharmacotherapy,

because they less often benefitted from the stepped-care programme.

In a future study we will examine the costs and cost-effectiveness of the stepped-care
programme compared to usual care. This is highly relevant in a field in which patient numbers
are vastly increasing (caused by demographic ageing in developed countries) and healthcare
systems already have difficulty addressing treatment demand.¹

Acknowledgements

We thank all professionals, support staff and management from the low vision rehabilitation
organisations ‘Royal Dutch Visio’, ‘Bartiméus’ and ‘Blindenzorg Licht en Liefde’ for their
support in developing the stepped-care programme and enabling this randomised controlled
trial. In addition, we thank patient representatives for their support in developing the
interventions and all visually impaired older adults who participated in this study.

Contributors

The executive researcher (HvdA), project leader (GvR), clinical psychology advisor (HC),
and principal investigator (RvN) conceived the study and its design. HvdA, TM (project
advisor) and RvN performed literature searches. HvdA, GvR and RvN developed the stepped-
care programme based on a qualitative study in close collaboration with patient
representatives and professionals from low vision rehabilitation centres. Data collection was
monitored by HvdA and RvN. A statistical analysis plan was developed by HvdA, FG and JT
(statisticians). Data analysis and interpretation was performed by HvdA, with support from
FG, JT and RvN. HvdA drafted the manuscript which was revised by the other authors (GvR,
HC, TM, FG, JT and RvN). All authors read and approved the final manuscript. GvR is
guarantor.
Funding

The present study was supported by ‘ZonMw InZicht’, the Dutch Organisation for Health Research and Development – InSight Society [grant number 60-0063598108]. The sponsor had no role in the design and conduct of the present study or in the writing of the manuscript.

Competing interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.

Ethical approval

The study protocol was approved by the Medical Ethics Committee of the VU University Medical Centre in Amsterdam, the Netherlands and the University Hospital Leuven in Belgium and has been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants provided written informed consent to participate in this study.

Data sharing

Full dataset and statistical code is available from the corresponding author. Consent was not obtained but the presented data are anonymised and risk of identification is low.

Transparency
The corresponding author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; no important aspects of this study have been omitted; and any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Copyright for authors

The corresponding author has the right to grant on behalf of all authors and does grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from the Contribution to third party material where-ever it may be located; and, vi) licence any third party to do any or all of the above.
Table 1. Uptake of the different steps of the stepped-care programme in the intervention group (n=131) during 12 months

<table>
<thead>
<tr>
<th>Treatment components</th>
<th>0-3 months (n=131)</th>
<th>3-6 months (n=124)</th>
<th>6-9 months (n=108)</th>
<th>9-12 months (n=98)</th>
<th>Total (0-12 months) (n=131)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Watchful waiting (n (%))</td>
<td>131 (100%)</td>
<td></td>
<td></td>
<td></td>
<td>131 (100%)</td>
</tr>
<tr>
<td>2. Guided self-help (n (%))</td>
<td></td>
<td>58 (46.8%)</td>
<td>14 (13.0%)</td>
<td>1 (1.0%)</td>
<td>73 (55.7%)</td>
</tr>
<tr>
<td>3. Problem-solving treatment (n (%))</td>
<td></td>
<td>18 (16.7%)</td>
<td>11 (11.2%)</td>
<td></td>
<td>29 (17.6%)</td>
</tr>
<tr>
<td>4. Referral to general practitioner (n (%))</td>
<td></td>
<td></td>
<td></td>
<td>7 (7.1%)</td>
<td>7 (5.3%)</td>
</tr>
</tbody>
</table>
Table 2. Patient characteristics measured at baseline and 24-month health care utilisation of the intervention (n=131) and control group (n=134)

<table>
<thead>
<tr>
<th>Patient characteristics measured at baseline</th>
<th>Intervention group (n=131)</th>
<th>Control group (n=134)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (female) (n (%))</td>
<td>91 (69.5%)</td>
<td>94 (70.1%)</td>
</tr>
<tr>
<td>Age (years) range [50-98] (mean (SD))</td>
<td>72.4 (12.5)</td>
<td>74.9 (11.9)</td>
</tr>
<tr>
<td>Education (years) range [0-16] (mean (SD))</td>
<td>10.4 (3.8)</td>
<td>9.3 (3.4)</td>
</tr>
<tr>
<td>Nationality (n (%))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dutch</td>
<td>116 (88.5%)</td>
<td>117 (87.3%)</td>
</tr>
<tr>
<td>Belgian</td>
<td>14 (10.7%)</td>
<td>16 (11.9%)</td>
</tr>
<tr>
<td>Other</td>
<td>1 (0.8%)</td>
<td>1 (0.7%)</td>
</tr>
<tr>
<td>Living situation (independent) (n (%))</td>
<td>115 (87.8%)</td>
<td>124 (92.5%)</td>
</tr>
<tr>
<td>Income (n (%))</td>
<td>Usually enough money</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61 (46.6%)</td>
<td>62 (46.3%)</td>
</tr>
<tr>
<td></td>
<td>Just enough money</td>
<td>55 (42.0%)</td>
</tr>
<tr>
<td></td>
<td>Not enough money</td>
<td>10 (7.6%)</td>
</tr>
<tr>
<td>Cause of vision loss (n (%))</td>
<td>Macular degeneration</td>
<td>62 (47.3%)</td>
</tr>
<tr>
<td></td>
<td>Glaucoma</td>
<td>26 (19.8%)</td>
</tr>
<tr>
<td></td>
<td>Cataract</td>
<td>26 (19.8%)</td>
</tr>
<tr>
<td></td>
<td>Diabetic retinopathy</td>
<td>5 (3.8%)</td>
</tr>
<tr>
<td></td>
<td>Cerebral haemorrhage</td>
<td>5 (3.8%)</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>45 (34.4%)</td>
</tr>
<tr>
<td>Time of onset (years) range [0-79] (mean (SD))</td>
<td>16.0 (19.6)</td>
<td>14.4 (18.2)</td>
</tr>
<tr>
<td>LogMAR visual acuity (n (%))</td>
<td>Normal visual acuity*</td>
<td>9 (6.9%)</td>
</tr>
<tr>
<td></td>
<td>Mild vision loss</td>
<td>24 (18.3%)</td>
</tr>
<tr>
<td></td>
<td>Low vision / blindness</td>
<td>86 (65.6%)</td>
</tr>
<tr>
<td>Comorbidity range [0-5] (mean (SD))</td>
<td>1.1 (1.2)</td>
<td>1.2 (1.2)</td>
</tr>
<tr>
<td>History of major depressive disorder (n (%))</td>
<td>30 (22.9%)</td>
<td>25 (18.7%)</td>
</tr>
<tr>
<td>History of dysthymic disorder (n (%))</td>
<td>4 (3.1%)</td>
<td>1 (0.7%)</td>
</tr>
<tr>
<td>History of panic disorder (n (%))</td>
<td>8 (6.0%)</td>
<td>8 (6.1%)</td>
</tr>
<tr>
<td>Mental health services received in three months before baseline (n (%))</td>
<td>Information</td>
<td>14 (10.7%)</td>
</tr>
<tr>
<td></td>
<td>Practical support</td>
<td>38 (29.0%)</td>
</tr>
<tr>
<td></td>
<td>Skills training</td>
<td>5 (3.8%)</td>
</tr>
<tr>
<td></td>
<td>Counselling/therapy</td>
<td>20 (15.3%)</td>
</tr>
<tr>
<td></td>
<td>Referral to specialist</td>
<td>5 (3.8%)</td>
</tr>
<tr>
<td></td>
<td>Medication</td>
<td>17 (13.0%)</td>
</tr>
</tbody>
</table>
24-month health care utilisation / usual care

<table>
<thead>
<tr>
<th>Service</th>
<th>Usual Care (mean (SD))</th>
<th>25-Month Health Care (mean (SD))</th>
</tr>
</thead>
<tbody>
<tr>
<td>General practitioner</td>
<td>9.42 (10.68)</td>
<td>9.77 (11.25)</td>
</tr>
<tr>
<td>Company physician</td>
<td>0.24 (1.18)</td>
<td>0.16 (1.07)</td>
</tr>
<tr>
<td>Medical specialist</td>
<td>10.40 (16.58)</td>
<td>8.42 (11.76)</td>
</tr>
<tr>
<td>Occupational- or physiotherapist</td>
<td>22.14 (45.10)</td>
<td>26.05 (42.26)</td>
</tr>
<tr>
<td>Social worker</td>
<td>3.41 (8.78)</td>
<td>2.90 (8.16)</td>
</tr>
<tr>
<td>Psychologist or psychiatrist</td>
<td>1.50 (5.06)</td>
<td>1.78 (6.89)</td>
</tr>
<tr>
<td>Alternative healer</td>
<td>0.73 (3.79)</td>
<td>1.37 (5.29)</td>
</tr>
<tr>
<td>Group-based peer support</td>
<td>1.60 (12.57)</td>
<td>1.93 (13.46)</td>
</tr>
<tr>
<td>Homecare</td>
<td>158.77 (287.24)</td>
<td>154.59 (298.18)</td>
</tr>
<tr>
<td>Hospitalisation</td>
<td>3.62 (11.35)</td>
<td>5.49 (17.34)</td>
</tr>
<tr>
<td>Medication (yes/no)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mental health</td>
<td>35 (26.7%)</td>
<td>46 (34.3%)</td>
</tr>
<tr>
<td>Other</td>
<td>103 (78.6%)</td>
<td>107 (79.9%)</td>
</tr>
</tbody>
</table>

* These participants have a visual field of ≤30 degrees and/or an evident help request for which options in regular ophthalmic practice are not adequate, such as contrast sensitivity or glare.
Table 3. Primary and secondary outcomes at baseline, 3, 6, 9, 12 and 24 months for the intervention (n=131) and control group (n=134)

<table>
<thead>
<tr>
<th></th>
<th>Intervention group (n=131)</th>
<th>Control group (n=134)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>baseline</td>
<td>3 months</td>
</tr>
<tr>
<td>Primary outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cumulative incidence of depressive and/or anxiety disorder (MINI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>0 (0.0%)</td>
<td>20 (15.3%)</td>
</tr>
<tr>
<td>Cumulative incidence of depressive disorder (MINI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>0 (0.0%)</td>
<td>15 (11.5%)</td>
</tr>
<tr>
<td>Cumulative incidence of anxiety disorder (MINI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>0 (0.0%)</td>
<td>16 (12.2%)</td>
</tr>
<tr>
<td>Cumulative incidence of depressive and anxiety disorder (MINI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n (%)</td>
<td>0 (0.0%)</td>
<td>11 (8.4%)</td>
</tr>
<tr>
<td>Secondary outcomes*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms of depression (CES-D)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean summary score (SD)</td>
<td>21.24 (6.42)</td>
<td>17.58 (9.34)</td>
</tr>
<tr>
<td>Mean θ (SD)</td>
<td>-0.01 (1.15)</td>
<td>-0.06 (1.21)</td>
</tr>
<tr>
<td>Symptoms of anxiety (HADS-A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean summary score (SD)</td>
<td>7.05 (4.13)</td>
<td>5.84 (4.07)</td>
</tr>
<tr>
<td>Vision-related QoL (LVQOL-18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean summary score (SD)</td>
<td>42.55 (13.21)</td>
<td>-</td>
</tr>
<tr>
<td>Mean θ (SD)</td>
<td>-0.01 (1.15)</td>
<td>-</td>
</tr>
<tr>
<td>Adaptation to vision loss (AVL-9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean summary score (SD)</td>
<td>14.07 (5.65)</td>
<td>-</td>
</tr>
<tr>
<td>Health-related QoL (EQ-5D)</td>
<td>Mean θ (SD)</td>
<td>Mean utility score (SD)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>0.08 (1.15)</td>
<td>0.66 (0.25)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.02 (1.24)</td>
<td>0.64 (0.29)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-0.02 (1.32)</td>
<td>0.67 (0.28)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-0.07 (1.30)</td>
<td>0.67 (0.24)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.03 (1.18)</td>
<td>0.63 (0.27)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0.04 (1.13)</td>
<td>0.65 (0.27)</td>
</tr>
</tbody>
</table>

*θs were derived for the CES-D, LVQOL and AVL based on IRT analysis, no θs were derived for the HADS-A because of model misfit.

MINI Mini International Neuropsychiatric Interview; CES-D Centre for Epidemiologic Studies Depression; HADS-A Hospital Anxiety and Depression Scale-Angst; QoL quality of life; LVQOL Low Vision Quality of Life Questionnaire; AVL Adaptation to Vision Loss; EQ-5D Euroqol-5 Dimensions
Table 4. Patient-evaluation of services

<table>
<thead>
<tr>
<th>Treatment components (N (%))</th>
<th>Guided self-help (n=73)</th>
<th>Problem-solving treatment (n=29)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Information and participation:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I received sufficient information about the method/step</td>
<td>52 (71.2%)</td>
<td>6 (8.2%)</td>
</tr>
<tr>
<td>I received sufficient information about the expected result</td>
<td>43 (58.9%)</td>
<td>22 (30.1%)</td>
</tr>
<tr>
<td>I helped determine treatment possibilities</td>
<td>55 (75.3%)</td>
<td>10 (13.7%)</td>
</tr>
<tr>
<td>Professional:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The professional had sufficient expertise</td>
<td>48 (65.8%)</td>
<td>6 (8.2%)</td>
</tr>
<tr>
<td>I sufficiently trusted the professional</td>
<td>53 (72.6%)</td>
<td>5 (6.8%)</td>
</tr>
<tr>
<td>The professional showed respect</td>
<td>51 (69.9%)</td>
<td>6 (8.2%)</td>
</tr>
<tr>
<td>Result of the treatment:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>This was the right approach for my problems</td>
<td>48 (65.8%)</td>
<td>17 (23.3%)</td>
</tr>
<tr>
<td>The treatment increased my feelings of control</td>
<td>45 (61.6%)</td>
<td>20 (27.4%)</td>
</tr>
<tr>
<td>My situation sufficiently improved based on this treatment</td>
<td>39 (53.4%)</td>
<td>21 (28.8%)</td>
</tr>
<tr>
<td>I am able to do more things that are important to me</td>
<td>35 (48.0%)</td>
<td>16 (21.9%)</td>
</tr>
<tr>
<td>I can cope better with situations that I previously had difficulty with</td>
<td>42 (57.5%)</td>
<td>18 (24.7%)</td>
</tr>
<tr>
<td>Satisfaction score, range [4-10] (mean (SD))</td>
<td>7.54 (1.20)</td>
<td>7.05 (1.00)</td>
</tr>
</tbody>
</table>
Figure 1. Stepped-care treatment protocol for visually impaired older adults
Figure 2. Flow diagram of study participants
REFERENCES

Step 1 watchful waiting (three months)

The first step was a period of watchful waiting, involving an active decision not to treat the condition but, instead, to intermittently reassess its status. The executive researcher contacted the patient by telephone at baseline (+/- 15 minutes) and after three months of watchful waiting (+/- 15 minutes). Patients could contact the executive researcher by telephone during this period if necessary.

Step 2 guided self-help (three months)

In the second step guided self-help, based on a written, digital, audio and Braille version of a cognitive behavioural therapy (CBT)-based self-help course (with specific vision-related examples and exercises) was offered. The course was divided into seven chapters, aimed at:

1) increasing awareness of depression and anxiety in relation to having a chronic visual impairment, and setting a personal goal.

2) increasing awareness of fatigue and stress in relation to depression and anxiety in people with a visual impairment, and offering relaxation exercises.

3) increasing awareness of pleasurable activities that can still be carried out despite the visual impairment, and encouraging to take action.

4) identifying and replacing self-defeating thoughts with healthier thoughts by means of exercises based on rational emotive behaviour therapy (REBT).

5) identifying negative thought patterns (e.g. black-and-white thinking, catastrophic thinking) and replace unhelpful thoughts with helpful thoughts.

6) identifying personal communication styles (passive, assertive or aggressive), and learn to use an assertive communication style.

7) continuing to use learned skills by reflecting on everything that has been learned and setting goals for the future.

Guidance was provided by trained and supervised occupational therapists (n=17) from the
outpatient low vision rehabilitation organisations. Two face-to-face contacts took place at the beginning of the intervention (+/- 60 minutes each) and one to three telephone calls (+/- 15 minutes each). In the meantime patients followed the intervention at home.

Step 3 problem solving treatment (PST) (three months)

In the third step PST was offered by trained and supervised social workers (n=7) and psychologists (n=5) of the low vision rehabilitation centres. A maximum of seven face-to-face contacts (+/- 60 minutes each) took place. During each of these contacts the seven steps of PST were completed: 1) clarify the problem, 2) establish realistic goals, 3) generate multiple alternative solutions by brainstorming, 4) explore pros and cons of the alternative solutions, 5) select the best solution, 6) conduct a plan to carry out the best solution, and 7) evaluate the process.

Step 4 referral to the general practitioner (GP)

When elevated symptoms of depression and anxiety still persisted after PST, the executive researcher contacted the patient by telephone to refer him/her to the GP (+/- 15 minutes). The executive researcher called the GP, who made an appointment with the patient to discuss further treatment and the use of medication (+/- 15 minutes).
Appendix 1. What this paper adds

What is already known on this topic

Previous systematic reviews on psychological interventions in visually impaired older adults10,14 found that PST and self-management programmes can be effective in diminishing depression in visually impaired older adults. However, evidence is scarce, results have only been investigated up to six months and anxiety was not yet taken into account.

What this study adds

The present study combined treatment components, addressed both depression and anxiety, and monitored patients during a 2-year period. Investigating stepped-care in this population was novel and may lead to standard trajectories to deal with depression and anxiety in the field of low vision.
Appendix 2. Psychometric properties of secondary outcomes based on item response theory (IRT)

<table>
<thead>
<tr>
<th></th>
<th>CES-D</th>
<th>HADS-A</th>
<th>LVQOL-18</th>
<th>AVL-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFI</td>
<td>0.981</td>
<td>0.999</td>
<td>0.942</td>
<td>0.980</td>
</tr>
<tr>
<td>TLI</td>
<td>0.979</td>
<td>0.998</td>
<td>0.934</td>
<td>0.974</td>
</tr>
<tr>
<td>RMSEA</td>
<td>0.065</td>
<td>0.031</td>
<td>0.113</td>
<td>0.074</td>
</tr>
<tr>
<td>Monotonicity (item misfit p-value <0.001)</td>
<td>Item 17</td>
<td>Items 1,3,4,6</td>
<td>Items 18,19</td>
<td>Item 1,2,3,6</td>
</tr>
<tr>
<td>Local dependence (residual covariance between items)</td>
<td>Items 15-19 (0.40)</td>
<td>None</td>
<td>None</td>
<td>Items 3-9 (0.26)</td>
</tr>
<tr>
<td>DIF</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
 - trial vs. non-trial participants
 - baseline measurement vs. 24 months follow-up

CES-D Centre for Epidemiologic Studies Depression; HADS-A Hospital Anxiety and Depression Scale-Anxiety; LVQOL Low Vision Quality of Life Questionnaire; AVL Adaptation to Vision Loss; CFI comparative fit index; TLI Tucker Lewis index; RMSEA root mean square error of approximation; DIF differential item functioning

CES-D: despite some local dependence between two items and one misfitting item, all 20 items were left in the scale because the change in item thresholds of the remaining items after omitting them was minimal (mean difference in item thresholds ranged from 0.01 to 0.04 and the maximum absolute difference ranged from 0.11 to 0.14). Also, the 20-item version was slightly preferred because of comparability with other studies.

HADS-A: despite excellent fit to a unidimensional model, no local dependence and sufficient monotonicity, the outcome did not fit well to the GRM model (also the generalized partial credit model was tried). It was assumed that, in this case, the summary score would offer the best effect estimate.

LVQOL: to obtain model fit, some issues had to be resolved. Because of limited use of the most extreme response category (six: “cannot perform at all”) it was collapsed with response category five (“severe problems”). Moreover, three items (2, 10 and 13) were deleted to resolve local dependence. After that, the scale showed moderate fit to a unidimensional model. Although items 18 and 19 still did not fit well to the GRM model, they were left in the scale because item parameters did not improve after omitting...
and differences were minimal (mean difference ranged from 0.13 to 0.15 and the maximum absolute difference ranged from 0.17 to 0.52).

AVL-9: showed good fit to a unidimensional model and proof of monotonicity. Local dependence was found between two items; four items did not fit well with the GRM model. However, these items were left in the scale because the difference after omitting them was minimal (mean difference ranged from 0.03 to 0.10 and the maximum absolute difference ranged from 0.07 to 0.34).